Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
J Am Coll Emerg Physicians Open ; 1(4): 578-591, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-1898681

ABSTRACT

Objective: All respiratory care represents some risk of becoming an aerosol-generating procedure (AGP) during COVID-19 patient management. Personal protective equipment (PPE) and environmental control/engineering is advised. High velocity nasal insufflation (HVNI) and high flow nasal cannula (HFNC) deliver high flow oxygen (HFO) therapy, established as a competent means of supporting oxygenation for acute respiratory distress patients, including that precipitated by COVID-19. Although unlikely to present a disproportionate particle dispersal risk, AGP from HFO continues to be a concern. Previously, we published a preliminary model. Here, we present a subsequent highresolution simulation (higher complexity/reliability) to provide a more accurate and precise particle characterization on the effect of surgical masks on patients during HVNI, low-flow oxygen therapy (LFO2), and tidal breathing. Methods: This in silico modeling study of HVNI, LFO2, and tidal breathing presents ANSYS fluent computational fluid dynamics simulations that evaluate the effect of Type I surgical mask use over patient face on particle/droplet behavior. Results: This in silico modeling simulation study of HVNI (40 L min-1) with a simulated surgical mask suggests 88.8% capture of exhaled particulate mass in the mask, compared to 77.4% in LFO2 (6 L min-1) capture, with particle distribution escaping to the room (> 1 m from face) lower for HVNI+Mask versus LFO2+Mask (8.23% vs 17.2%). The overwhelming proportion of particulate escape was associated with mask-fit designed model gaps. Particle dispersion was associated with lower velocity. Conclusions: These simulations suggest employing a surgical mask over the HVNI interface may be useful in reduction of particulate mass distribution associated with AGPs.

SELECTION OF CITATIONS
SEARCH DETAIL